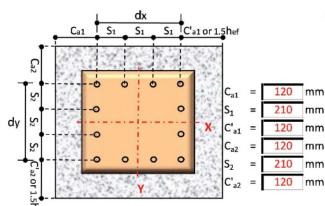

DESIGN OF ANCHOR SYSTEM IN CONCRETE

ACI 219M-11 APPENDIX D


2

1. Input Data:

No. of Intermediate Anchors along X-Direction(one side), $\rm n_{\rm x}$

No. of Intermediate Anchors along Y-Direction(one side), n_{γ}

Total No. of Anchors: N = 4

Total No. of Anchors along X-Direction(one side) =

Total No. of Anchors along Y-Direction(one side)

2. Applied Loads

3. Verification of Anchors against Tension Clause D.5

For Single Anchor:

Check Applied Tension for each Anchor, Nua

Tension on each Anchor due to Nu, $T_A = Nu/N$

= 0.00 kN

Tension on each Anchor due to M_{UX} , $T_X = (M_{UX}/dy)/Nx$ where: Nx = No. of anchors for M_{UX}

= 59.524 kN = 2

Tension on each Anchor due to M_{UY} , $T_Y = (M_{UY}/dx)/Ny$ where: Ny = No. of anchors for M_{UY}

0.00 kN =

$$N_{ua} = T_A + T_X + T_Y = 59.524 \text{ kN}$$

For Anchor Group:

Check Applied Tension for group of anchors, Nuag

Tension due to Nu, T_G = Nu = 0 kN Tension due to M_{UX} , T_{GX} = (M_{UX}/dy) = 119.05 kN Tension due to M_{UY} , T_{GY} = (M_{UY}/dx) = 0 kN

$$N_{ua_{f}} = T_{G} + T_{GX} + T_{GY} = 119.05 \text{ kN}$$

DESIGN OF ANCHOR SYSTEM IN CONCRETE

ACI 318M-11 APPENDIX D

3.1. Steel Strength of Anchors

Clause D.5.1

Tension Capacity of each Anchor, ØN_{sa}:

$$\emptyset N_{sa} = \emptyset A_{se,N} f_{uta}$$

where:

$$\emptyset$$
 = 0.7 Clause D.4.3

$$A_{se,N}$$
 = Effective Cross-Sectional Area of Anchor = 245.04 mm²
 f_{uta} = Nominal Tensile Strength of Anchors = 800 MPa

$$N_{sa}$$
 = 196.0 kN $ØN_{sa}$ = 137.22 kN

$$N_{ua} = 59.52 \text{ kN} < \emptyset N_{sa} = 137.22 \text{ kN}$$
; OK ; Ratio = 0.43

3.2. Concrete Breakout Strength Clause D.5.

For Single Anchors:

Concrete Breakout Capacity , $\emptyset N_{cb}$:

$$\emptyset N_{cb} = \emptyset (A_{Nc}/A_{Nco}) \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$$

where:

$$\emptyset$$
 = 0.7 Clause D.4.3

$$h'_{ef}$$
 = Effective embedment depth = 80 mm

$$= 202500 \text{ mm}^2$$

A_{nco} = Projected concrete failure area of a single anchor with an edge distance equal

$$= 9h_{ef}^{2}$$

$$= 57600 \text{ mm}^2$$

$$\Psi_{c,N}$$
 = 1.25 Clause 5.2.6

$$\Psi_{\text{ed,N}}$$
 = 1.00 Clause 5.2.5

$$\Psi_{cp,N}$$
 = 1.00 Clause 5.2.7

$$N_b = kc.\lambda a.\sqrt{f'}c. hef^{1.5}$$
 Clause D.5.2.2

$$N_{cb}$$
 = 177.88 kN

= 124.51 kN

 $ØN_{cb}$

$$N_{ua} = 59.52 \text{ kN} < \emptyset N_{cb} = 124.51 \text{ kN}$$
; OK ; Ratio = 0.48

DESIGN OF ANCHOR SYSTEM IN CONCRETE

ACI 318M-11 APPENDIX D

Check if Anchor Group effects shall be considered: s $_{min}$ < 3 h $_{e}$

For Anchor Group:

Concrete Breakout Capacity, ØN_{cbg}:

$$\begin{split} \emptyset N_{\text{cbg}} &= \emptyset (A_{\text{Nc}} / A_{\text{Nco}}) \, \Psi_{\text{ec},N} \Psi_{\text{ed},N} \, \Psi_{\text{c},N} \Psi_{\text{cp},N} N_b \\ \Psi_{\text{ec},N} &= 1 \, / \, (1 + 2 \, e'_{\,N} / \, 3 \, h_{\text{ef}}) \quad \text{Clause D.5.2.4} \\ &= 1.00 \quad \text{where} \end{split}$$

e'_N = distance between resultant tension on a group of anchors loaded in tension and centroid of the

group of anchors loaded in tension

$$e'_{N} = \boxed{0}$$
 mm Provide input value if applicable and zero if not applicable

$$N_{cbg}$$
 = 177.88 kN $ØN_{cbg}$ = 124.51 kN

$$N_{ua\xi}$$
 = 119.05 kN < $\rlap/$ 0 N_{cbg} = 124.51 kN ; $\rlap/$ 0 K ; Ratio = 0.96

Excess Tension, T_{net}:

$$T_{net}$$
 = $N_{ua} - \emptyset N_{cbg}$
= - kN

Diameter of Provided Steel Reinforcement | 12

Required No. of Additional Tension Reinforcement Bars, $n_{\rm tb}$

$$n_{tb} = T_{net}/(\emptyset As_b f y_b)$$

where:

As_b = Cross-sectional area of steel reinforcement provided

= 113.1 mm^2 /_b = Yield Strength of Steel Reinforcement

= 420 Mpa = 0.9

Therefore,

 n_{tb} = - T - additional tension reinforcement required

3.3. Pullout Strength Clause D.5.3

Pullout Capacity , $\emptyset N_{pn}$:

For single headed stud or headed bolt: Clause D.5.3.4

392.7 mm²

DESIGN OF ANCHOR SYSTEM IN CONCRETE

ACI 318M-11 APPENDIX D

 $N_{pn} = 100.53 \text{ kN}$

 $ØN_{pn} = 70.37 \text{ kN}$

For single hooked bolt:

Clause D.5.3.5

 N_P = 0.9 f'c e_h da where:

= - kN e_h

distance from the inner surface of the shaft of a J- or
 L-bolt to the outer tip of J- or L-bolt (3da ≤ eh ≤ 4.5da)

= 0 mm² Provide input value if applicable and zero if not applicable

 N_{pn} = - kN $\emptyset N_{pn}$ = - kN

For single headed stud or headed bolt:

 $N_{ua} = 59.52 \text{ kN} < \emptyset N_{pn} = 70.37 \text{ kN} ;$ OK ; Ratio = 0.85

For single hooked bolt:

 $N_{ua} = - kN - \emptyset N_{pn} = - kN$; - ; Ratio =

3.4.Concrete side-face blowout strength of a headed anchor

Clause D.5.4

For Single Anchors:

Side-face Blowout Capacity , $\emptyset N_{sb}$:

 $\emptyset N_{sb} = \emptyset (13C_{a1}\sqrt{A_{brg}})\lambda af'c$

where:

 \emptyset = 0.7 Clause D.4.3

C_{a1} = distance from the center of an anchor shaft to the edge of concrete in one direction /minimum edge distance

= 120 mm

 C_{a2} = distance from the center of an anchor shaft to the edge of concrete in the direction perpendicular to C_{a1}

= 120 mm

 A_{brg} = net bearing area of the head of anchor

 $= 392.7 \text{ mm}^2$

 $\lambda a = 1.00$

Consider if $1.0 \le C_{a2}/C_{a1} \le 3.0$: Yes

 $C_{a2}/C_{a1} = 1.00$

 N_{sb} = 174.88 kN $\emptyset N_{sb}$ = 61.21 kN

 $N_{ua} = 59.52 \text{ kN} < \emptyset N_{sb} = 61.21 \text{ kN} ; OK ; Ratio = 0.97$

Check if Anchor Group effects shall be considered: s_{min} < 2 c $_{Na}$

For Anchor Group:

Side-face Blowout Capacity , $\emptyset N_{sbg}$:

 $\emptyset N_{shg} = \emptyset (1 + (s/6C_{a1})N_{sh})$

DESIGN OF ANCHOR SYSTEM IN CONCRETE

$$N_{sb} = 174.88 \text{ kN}$$
 $\emptyset N_{sbg} = 122.41 \text{ kN}$
$$N_{uag} = 119.05 \text{ kN} < \emptyset N_{sbg} = 122.41 \text{ kN} ; \text{ OK} ; \text{ Ratio} = 0.97$$

3.5. Bond Strength of Adhesive Anchor Clause D.5.5

For Single Anchors:

Bond Strength Capacity , $\emptyset N_a$:

$$\emptyset N_a = \emptyset (A_{Na}/A_{Nao}) \Psi_{ed,Na} \Psi_{cp,Na} N_{ba}$$

where:

Ø

= projected influence area of group of adhesive anchors

202500 mm²

= Projected influence area of a single anchor if not limited by edge distance A_{Nao}

or spacing

 $= (2c_{Na})^2$ (If c_{Na} > edge distance)

57600 mm^2

= 10 $d_a \sqrt{(\tau_{uncr}/7.6)}$

154 mm 4.5

Table D.5.5.2 $\Psi_{\sf ed,Na}$ 0.93 Clause D.5.5.4

Service Environment:

Outdoor 🔻

= $\lambda a.\tau_{cr}.\pi.d_a.D$

1.00

where:

Clause D.5.5.5

35.19 kN λa 1.00 Clause D.3.6 τ_{cr} Table D.5.5.2

 N_a 115.53 kΝ 86.64 ØN_a kΝ

 $N_{ua} = 59.524 \text{ kN} < ØN_{ag} = 86.64 \text{ kN}$; OK ; Ratio = 0.69

Check if Anchor Group effects shall be considered: s_{min} < 2 c $_{Na}$

Check:

For Anchor Group:

 $\Psi_{\text{cp,Na}}$

Bond Strength Capacity, ØNag:

$$\emptyset N_{ag} = \emptyset (A_{Na}/A_{Nao}) \Psi_{ec,Na} \Psi_{ed,Na} \Psi_{cp,Na} N_{ba}$$

$$\Psi_{ec,Na} = 1/(1 + e'_{N}/c_{Na})$$
 Clause D.5.5.3
= 1.00 where:

e'_N = distance between resultant tension on a group of anchors loaded in tension and centroid of the group

of anchors loaded in tension

= 115.53 kN Provide input value if applicable and zero if not N_{ag} e'_N applicable $ØN_{ag}$ 80.87 kN

DESIGN OF ANCHOR SYSTEM IN CONCRETE

ACI 318M-11 APPENDIX D

 N_{uag} = 119.05 kN > $\emptyset N_{ag}$ = 80.87 kN ; NOT OK ; Ratio = 1.47

4. Verification of Anchors against Shear

For Single Anchor:

Check Applied Shear for each Anchor, V_{ua}

$$V_{ua} = \sqrt{(Vx^2+Vy^2)/N}$$
$$= 1.00 \text{ kN}$$

For Anchor Group:

Check Applied Shear for group of anchors , V_{uag}

$$V_{\text{uag}} = \sqrt{(V_X^2 + V_Y^2)}$$
$$= 4.00 \text{ kN}$$

4.1. Steel Strength of Anchor Clause D.6.1

Shear Capacity of each Anchor, $ØV_{sa}$:

$$ØV_{sa} = 0.6.A_{se,V}f_{uta}$$

where:

 \emptyset = 0.7 Clause D.4.3

 $A_{se,V}$ = Effective Cross-Sectional Area of Anchor = 245.04 mm² f_{uta} = Nominal Tensile Strength of Anchors = 800 MPa

 V_{sa} = 117.62 kN $ØV_{sa}$ = 82.33 kN

 $V_{ua} = 1.00 \text{ kN} < \emptyset V_{sa} = 82.33 \text{ kN}$; OK ; Ratio = 0.01

4.2. Concrete Shear Breakout Strength Clause D.6.2

For Single Anchors:

Concrete Breakout Capacity , $\emptyset V_{cbg}$:

$$\emptyset V_{cb}$$
 = $\emptyset (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_b$

where:

Ø = 0.7

 c'_{a1} = Effective embedment depth = 120 mm

 A_{Vc} = Projected concrete failure area of groups of anchor

 $= 54000 \text{ mm}^2$

A_{Vco} = Projected concrete failure area for a single anchor

 $= 4.5(c_{a1})^2$

 $= 64800 \text{ mm}^2$

ha = thickness of member in which an anchor is located, measured parallel to anchor axis.

= 350 mm

 $\Psi_{c,V}$ = modification factor based on presence or absence of cracks in concrete

= 1.00

DESIGN OF ANCHOR SYSTEM IN CONCRETE

ACI 318M-11 APPENDIX D

 $\begin{array}{llll} \Psi_{\text{ed,V}} & = & 0.70 & \text{Clause D.6.2.6} \\ \Psi_{\text{h,V}} & = & 1.00 & \text{Clause D.6.2.8} \end{array}$

 $V_b = (0.6 (\ell_e/d_a)^{0.2} V d_a) \lambda a V f' c (C_{a1})^{1.5}$ where:

 $= 30.24 \text{ kN} \qquad \qquad \ell_{\rm e} = 160 \text{ mm}$ $V_{\rm b} = 3.7 \, \lambda \, \text{Vf'c} \, (\text{Ca1})^{1.5} \qquad \qquad \lambda a = 1.00 \text{ Clause D.3.6}$

= 27.514 kN

 $\emptyset V_{cb} = 16.05 \text{ kN}$ $\emptyset V_{cb} = 11.23 \text{ kN}$

 V_{ua} = 1.00 kN < $ØV_{cb}$ = 11.23 kN ; OK ; Ratio = 0.09

For Anchor Group:

Concrete Breakout Capacity , $\emptyset V_{cbg}$:

 $\emptyset V_{cbg}$ = $\emptyset (A_{Vc}/A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_b$

 $\Psi_{ec,V}$ = 1/(1+2e'_V/3c_{a1}) Clause D.6.2.5 = 1.00 where:

> e'_V = distance between resultant shear on a group of anchors loaded in shear in the same direction, and the centroid of the group of anchors in same direction

> e'_V = 0 mm Provide input value if applicable and zero if not applicable

 $\emptyset V_{cb} = 16.05 \text{ kN}$ $\emptyset V_{cb} = 11.23 \text{ kN}$

 $V_{uae} = 4.00 \text{ kN} < ØV_{cbg} = 11.23 \text{ kN}$; OK ; Ratio = 0.36

4.3. Pryout Strength Clause D.6.3

For Single Anchors:

Pryout Capacity , $\emptyset V_{cp}$:

$$ØV_{cp} = Øk_{cp}N_{cp}$$

where:

 $N_{cp} = 177.9 \text{ kN}$ $k_{cp} = 2.00$ $\emptyset = 0.7$

V_{co} = 355.8 kN

 $ØV_{cd} = 249.0 \text{ kN}$

 V_{ua} = 1.00 kN < $ØV_{cp}$ = 249.03 kN ; OK ; Ratio = 0.00

For Anchor Group:

Pryout Capacity, $\emptyset V_{cog}$:

DESIGN OF ANCHOR SYSTEM IN CONCRETE

ACI 318M-11 APPENDIX D

$$ØV_{cpg} = Øk_{cp}N_{cpg}$$

where:

 $N_{cpg} = 177.9 \text{ kN}$ $k_{cp} = 2.00$ $\emptyset = 0.7$

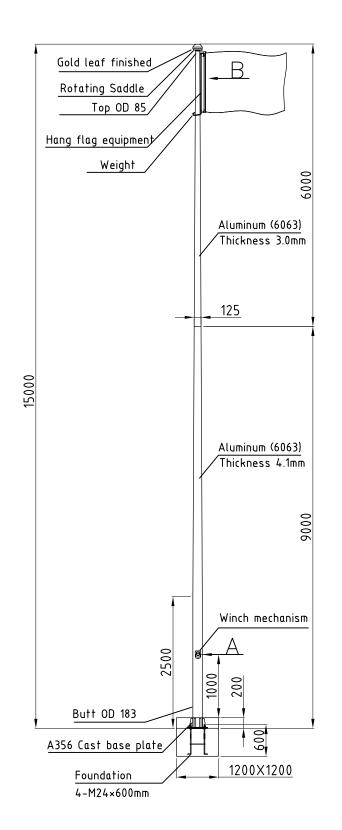
 $V_{cpg} = 355.8 \text{ kN}$ $\emptyset V_{cpg} = 249.0 \text{ kN}$

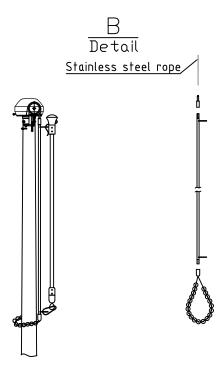
= 4.00 kN < \emptyset V_{cpg} = 249.0 kN ; OK ; Ratio = 0.02

SUMMARY:

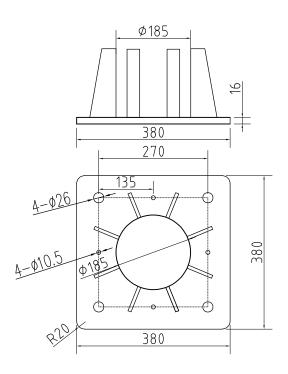
Type of Anchor : Cast-In Anchors

Number and Diameter of Anchor : 4 - M 24


Grade of Anchor : Grade 8.8


Anchor Embedment Depth : 600 mm

Area of Concrete Pedestal or Affected Concrete : 450 x 450 mm


Compressive Strength of Concrete : 32 MPa
Yield Strength of Steel : 420 MPa
Tension Reinforcement in Concrete : - T

Summany	Ratio		Remarks	
Summary	Single	Group	Remarks	
Tensile Loading				
Steel Strength	0.43	N/A	Ø	
Concrete Breakout	0.48	0.96	Ø	
Pullout	0.85	N/A	②	
Side-face Blowout	0.97	0.97	0	
Bond Strength	N/A	N/A		
Shear Loading				
Steel Strength	0.01	N/A	Ø	
Concrete Breakout	0.09	0.36	Ø	
Pryout	0.00	0.02	O	

Base Plate

Remark:

- 1.All dimensions are in millimeters unless otherwise stated.
- 2.Material is aluminium alloy 6063-T6.
- 3. Surface treatment is powder coating.

Itemref	Quantity	Title/Name, designation, material, dimension etc				Article No./Reference		
Designed	by	Checked by	Approved by - date		Filename	Date 6 June, 2024		Scale
PROSPEC			15m High Aluminum Flagpole					
SPECIALTIES		FPA15i Modified (Internal Halyard)		Edition	Sheet			